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A Progressive Damage Model for the Prediction of
Fatigue Crack Growth in Bonded Joints

A. Pirondi and F. Moroni
Industrial Engineering Department, University of Parma,
Parma, Italy

A procedure to predict fatigue crack growth in bonded joints is developed in this
work within the framework of cohesive zone modelling and finite element analysis.
The idea is to link the fatigue damage rate in the cohesive elements to the macro-
scopic crack growth rate through a damage homogenisation criterion. In this way,
the experimental crack growth rate is related directly to damage evolution in the
cohesive zone, that is, no additional parameters have to be tuned beside the
quasi-static cohesive zone parameters. The procedure was implemented in the
ABAQUS finite element software using the USDFLD subroutine. In order to evalu-
ate the crack growth rate automatically, the strain energy release rate (crack
driving force) was calculated and updated automatically within the subroutine.
Mode I and Mode II loading cases have been dealt with and the implementation
for Mixed Mode I=II is under way.

Keywords: Adhesive bonding; Cohesive zone model; Fatigue; Fracture

1. INTRODUCTION

Fatigue loading is known to be a major source of failures; therefore, an
efficient modelling of the fatigue strength, especially for structures
designed using a fail-safe or damage-tolerant design method, is funda-
mental. The fatigue strength is characterized by a number of cycles to
failure which is the sum of the time necessary to nucleate the crack
and the time to propagate it to rupture. The crack nucleation phase,
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for a given average stress, is strongly influenced by the presence and
the shape of a fillet or spew at the edge of the joint, as shown in [1–3],
while the duration of the propagation phase is related to the length
and the shape of the joint [4].

In the case of theoretically defect-free joints, the crack nucleation
problem can be studied in terms of local stress in the adhesive layer,
or of notch-stress intensity factor (N-SIF) and stress singularity at
the corner between adhesive and adherend [4,5]. In the absence of a
fillet or spew, or in presence of defects due to lack of polymerisation
or adhesion, the nucleation phase is likely to be short, as detected in
[1,6]. In this case, the fracture mechanics (FM) approach to fatigue
has been extensively tested [7–12]. The fatigue crack growth (FCG)
rate da=dN is related to the range of strain energy release rate, DG,
by an analytical relationship, that can be used to approximate the
experimental behaviour. The simplest one is a Paris-like equation,

da

dN
¼ CðDGÞm: ð1Þ

while a more sophisticated relationship

da

dN
¼ DðGmaxÞg

1� Gth

Gmax

� �n1

1� Gmax

Gc

� �n2
ð2Þ

was used in other works such as in [7–9] to account for smooth transi-
tions towards a threshold and an upper bound for the FCG (C, m, D, g,
g1, and g2 are constant material parameters). In Eq. (2) the FCG
driving parameter is the maximum value of G during the loading
cycle, Gmax, instead of DG.

The strain energy release rate is a function of crack length, a, that
can be evaluated analytically in the case of simple geometries, or by
numerical methods such as the finite element (FE) method [7–11,13]
in more complex cases. Techniques used to derive G with a FE analysis
rely on the calculation of the J-integral or the virtual crack extension
(VCE) or the virtual crack closure (VCC) techniques. Once G has been
evaluated, a new crack front has to be defined by moving the mesh or
by debonding nodes at the crack tip. Crack extension direction and step
have to be correctly formulated, and this is not straightforward,
especially for 3-D cracks, where the crack driving force and the propa-
gation angle vary across the crack front. Some freeware and commercial
FE software (FRANC 2D=3D, ZenCrack, Marc, for example) can do this
work automatically in the case of cracks in homogenous bodies, while
the case of bonded interfaces is not at the same stage of development.
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An efficient way to simulate the presence and the evolution of a
defect at a bonded interface is to incorporate a model of the rupture
process (i.e., the criterion to trigger propagation) into the finite ele-
ments. In particular, the fracture under monotonic loading of bonded
joints has been successfully simulated using the cohesive zone (CZ)
model (a selection of papers is represented by [14–19]) that is incor-
porated into the so-called cohesive finite elements. According to
this approach, the zone in front of the physical crack tip opens
(slides) and then tears progressively apart following a given traction
(shear) – separation (sliding) behaviour. The results are generally
equivalent to those obtained by other FM techniques listed above,
since the CZ parameters are physically related to the fracture tough-
ness, Gc, and the critical crack tip opening displacement, dc. Besides,
they are often calibrated using the results of fracture experiments.
The advantages of using a CZmodel are that the evolution of a 3-D crack
comes out automatically from the analysis and it is possible to model
cases without an initial crack (in this case parameters may not be
the same as for cracked bodies as underlined, for example, in [20–22]).

The CZmodel was recently used tomodel fatigue crack growth both in
homogeneous bodies [23–25] and at bonded interfaces [26–28] as a con-
venient alternative to the traditional FM techniques. The work of Yang
et al. [23]. was based on the BEM (boundary element method). In this
case, they defined the evolution law of the stiffness attached to the dis-
placement jump between crack faces in the form of a polynomial expan-
sion, different for loading and unloading cases. The parameters of the
evolution law have to be evaluated experimentally with in-situmeasure-
ments of the traction-crack displacement jump during a cyclic test. Maiti
and Geubelle [24] developed a cohesivemodel that combines damage due
to monotonic loading and an evolution law for cohesive stiffness and
crack opening displacement as a function of the number of cycles. The
two parameters characterizing the fatigue part of the cohesive model
can be calibrated by comparison between FE modeling and FCG experi-
mental data. The paper of Ural et al. [25]. used a damage degradable
cohesive stiffness and a damage evolution law which considered the
possibility of damage healing if the surface traction falls below a thresh-
old. In this way, FCG retardation effects due to overload could be mod-
eled. With an adequate calibration of parameters, the model was able
to capture both standard FCG data and overload effects.

Concerning interfaces, Roe and Siegmund [26] introduced a cyclic
degradation of the monotonic cohesive strength based on a damage
variable, D, representing the ratio between the effective (damaged)
and nominal (undamaged) cross-section of a representative interface
element. The cyclic damage evolution law contained two additional
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parameters to be calibrated by FCG experiments. An approach similar
to [24] was developed in [27], where the robustness of the model in pre-
dicting crack growth rate was demonstrated, with an upper bound for
the cohesive element length and number of cycles per increment in
order to preserve the accuracy. Differently from other models that
require the calibration of cohesive law parameters for cyclic loading,
Turon et al. [28]. introduced the experimental FCG rate directly into
cyclic damage evolution in the cohesive zone through a damage hom-
ogenisation criterion. In this way, no parameters have to be tuned in
experiments, while the homogenisation criterion becomes a critical
issue concerning the performance of the model. Additionally, the value
of the applied strain energy release rate must be input to the model,
which is not straightforward in the case of complex geometries (in
[28] only geometries with a known solution for G were considered).
It is worth underlining that in [23,25,26], damage evolution is simu-
lated on cycle-by-cycle basis, while the schemes proposed in
[24,27,28] work incrementally on cycles and are, therefore, less
expensive from the computational point of view.

This work would like to retain the positive aspect of the work of [28],
that is, no need of fatigue parameters calibration but, at the same time,
to overcome the problem of the computation of the applied G with the
development of an automated procedure based on the global strain
energy output issued by the FE analysis. Additionally, a damage defi-
nition alike [26] was proposed that allows reproduction the fatigue
crack growth experiments more closely than in [28]. The procedure
was implemented so far for pure Mode I and pure Mode II, and vali-
dated against the corresponding FCG experiments on bonded joints.

2. THEORETICAL FRAMEWORK

The cohesive zone model relates the opening at the crack tip to the
stresses at the interface. Considering, for example, only the Mode I,
the normal stress-opening relationship is characterized by an ascend-
ing branch without development of damage, followed by a descending
branch where damage occurs. A simple representation of this charac-
teristic is a triangular shape law, Fig. 1.

Increasing monotonically the opening from 0 to d0, the fracture is
characterized by a stiffness, K0. Beyond the opening value correspond-
ing to d0, the response of the interface is characterized by a damage
value, D, that reduces the stiffness per unit area, K, with respect to
the initial one, following the equation

K ¼ ð1�DÞK0 ð3Þ
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until dc, where the interface cannot carry load any longer. The energy,
C, absorbed in this process is equal to the area of triangle

C ¼ 1

2
rmaxdc ð4Þ

and it is representative of the fracture energy of the material, Gc.
Considering the damage simply dependent from the opening, the

damage variable, D, can be written as

D ¼ dcðd� d0Þ
dðdc � d0Þ

: ð5Þ

Unloading from a damaged condition occurs along the dashed path
in Fig. 1. When applying a cohesive zone for monotonic loading to fati-
gue, two problems arise: i) damage occurs only above the threshold d0,
which may not be the same for monotonic and fatigue loading; ii) above
d0 the cycle tends rapidly to shakedown along the dashed unloading
path in Fig. 1; therefore, no crack increment is modeled.

The approach proposed in this work to model fatigue damage is of
the incremental type, that is, subcritical fatigue damage accumulation
rate is related to the increment in the number of cycles. The monotonic
behavior is recovered according to the general scheme described pre-
viously [Eqs. (3–5)].

Damage is representative of the effect of micro void nucleation and
micro-cracks. In general, considering a representative surface element
(RSE), as shown in Fig. 2, with a nominal surface equal to Ae and a
damaged area due to micro-voids or micro-cracks equal to Ad, D can
be written as reported in [29]

D ¼ Ad

Ae
ð6Þ

FIGURE 1 Stresses at the crack tip.
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and, therefore

K

K0
¼ 1� Ad

Ae
: ð7Þ

The underlying assumption in the use of a RSE instead of a rep-
resentative volume element (RVE) to characterise damage and its
effects is that, since the thickness of the bondline is generally very
small (of the order of tenths of millimetres), the distribution of damage
is constant through the thickness. In [28], the fatigue crack area
extension, dA, is taken as the sum of the damaged area, dAd, for all
of the RSE undergoing damage, that is, the ones within the process
zone, ACZ:

dA ¼
X
i2ACZ

dAi
d: ð8Þ

In this work, the middle surface associated with the integration
point (IP) of the cohesive element is taken as RSE; therefore, the crack
extension is the sum of the damaged area of all of the IPs within ACZ.
In 2-D, ACZ reduces to a length, LCZ that may be estimated analyti-
cally using a closed form equation [Eq. (9)] coming from Rice [30]

LCZ ¼ b
9p
32

EGmax

r2max

; ð9Þ

where b is the width of the crack front, Gmax is the maximum strain
energy release rate in the loading cycle, E is the Young’s modulus of
the adherends material, and rmax is the maximum cohesive strength.
In this work, the process area (ACZ) is taken as the area where the
opening is greater than a threshold value (dthk , where k is the mode
of fracture). Experimentally, the threshold is determined by progress-
ively decreasing DG until da=dN falls below a given, low value. The
value of DG at threshold, DGth, is taken as a material parameter.

FIGURE 2 Representation of damaged area Ad and initial area Ae for a RSE.
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The cohesive threshold parameter should be determined accordingly,
that is, for a fatigue running crack where the cohesive zone has
attained a steady-state extension. On the other hand, the value chosen
for dthk affects, in turn, the extension of the cohesive zone; therefore, a
unique solution cannot be found in this way. As a compromise, in this
work, dthk has been taken equal to the maximum opening (or sliding)
within the cohesive zone, when the strain energy release rate applied
to the joint is equal to the experimental strain energy release rate
threshold (that is D G ¼ D Gth), before starting the propagation phase.

In order to represent the crack growth due to fatigue, the local dam-
age of the cohesive elements has to be linked to the number of cycles.
The fatigue crack growth rate (dA=dN) is represented by Eq. (1)
(which was considered in this work) or by more complex expressions
like Eq. (2).

The damage growth rate can be written as

dD

dN
¼ dD

dAd

dAd

dN
: ð10Þ

Deriving Eq. (6), the increment of damage per increment of
damaged area for each IP is equal to

dD

dAd
¼ 1

Ae
: ð11Þ

The derivative of Eq. (8) with respect to the number of cycles yields

dA

dN
¼

X
i2ACZ

dAi
d

dN
: ð12Þ

The distribution of damage rate across ACZ is neither theoretically
nor experimentally easy to evaluate. The points closer to the crack tip
can be expected to undergo a higher damage rate than the others
located at the end of the process zone, leading, therefore, to a gradual
variation of damage along this region. One way could be to infer the
trend of damage rate by the comparison of experimental and simu-
lated compliance, but the experimental scatter and the numerical
approximation will probably not allow a punctual definition of the
damage evolution. On the other hand, a micromechanical analysis is
very demanding and the distribution of damage should be sampled
at different positions along the crack front. In order to overcome these
difficulties, the assumption made in [28] of taking dAd

dN as the mean
value of the damaged area growth rate

dAi
d

dN at the IPs belonging to
ACZ allows Eq. (12) to be written as
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dA

dN
¼

X
i2ACZ

dAd

dN
¼ nCZ

dAd

dN
¼ ACZ

Ae

dAd

dN
; ð13Þ

where ncz is the number of IPs lying on the process area that can be
rewritten as the ratio between the process area, ACZ, and the average
cross-sectional area associated with cohesive element IPs, Ae. From
Eqs. (10), (11), and (13), the fatigue damage growth rate can be
computed as:

dD

dN
¼ 1

ACZ

dA

dN
¼ 1

ACZ
CDGm ð14Þ

3. FINITE ELEMENT IMPLEMENTATION

The framework described previously has been implemented in the FE
software ABAQUS (Dassault Systèmes, Providence, RI, USA) using
the associated USDFLD subroutine to apply damage to the initial stiff-
ness, K0.

Assuming that in the fatigue cycle the load varies from a maximum
value Pmax to a minimum value Pmin, the load ratio is defined as

R ¼ Pmax

Pmin
: ð15Þ

The amplitude of the strain energy release rate is computed as

DG ¼ ð1� R2ÞGmax; ð16Þ

where Gmax is the strain energy release rate extrapolated from the
stress and displacement field when the maximum load is applied.
The value of DG is compared with the fatigue crack growth threshold,
DGth. If DG>DGth, the propagation will take place; otherwise, the
analysis is stopped and no more propagation will be shown.

According to the flow diagram in Fig. 3, at the beginning of the
increment, n, the damage Dn

i in IPs belonging to the process zone,
ACZ, is increased by a given quantity, DDn

i . This quantity is computed
following Eq. (17) and it represents the minimum between the
required quantity to reach unity and a defined value, DDmax:

DDn
i ¼ DDmax if 1�Dn

i > DDmax

DDn
i ¼ 1�Dn

i if 1�Dn
i < DDmax: ð17Þ

The value of DDmax can be tuned in order to minimize crack growth
rate oscillations. For each IP, integrating Eq. (14), an increment in the
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number of cycles for each one of the IPs, DNn
i is then estimated. After

that, the routine searches for the minimum value among the calcu-
lated DNn

i . This value, DN
n
min, is assumed to be the equivalent number

of cycles of the increment. Therefore, the number of cycles is updated
(Nnþ1); using Eq. (14), the new damage distribution is computed for all
the IPs belonging to the process zone (Dnþ1

i ).

3.1. Strain Energy Release Rate Calculation

In order to know the macroscopic crack growth rate according to Eq.
(1), the strain energy release rate has to be computed during the crack
propagation. Since the contour integral method is not yet available by
default for cohesive elements, a J-integral has been implemented in
the routine for a 2-D case. The path of the integral is, in this case,
the boundary of the cohesive elements (Fig. 4).

The definition of the J integral [31] is

J ¼
Z
C
n � ½H� � qdC; ð18Þ

FIGURE 3 Flow diagram of the damage increment.

FIGURE 4 Definition of the J integral surrounding the crack tip.
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where n is a vector normal to the path, q is a vector lying on the crack
propagation direction, and [H] is defined as

½H� ¼ S½I� � ½ri;j�
@ui;j

@xi;j

� �
; ð19Þ

where S is the strain energy density, [ri, j] the stress matrix, and ui the
displacements of the points lying on the path. If the crack lays on the
plane orthogonal to x2, and the geometrical non linearity can be
neglected, the J integral can be written as

J ¼
Z
C

�r1;2
@u1

@x1
� r2;2

@u2

@x1

� �
dC: ð20Þ

The methodology described above is more difficult to implement in a
3-D case. In this perspective, G has also been computed according to
the original Griffith’s definition, or energy derivative technique (EDT):

G ¼ �dðU �WÞ
dA

: ð21Þ

whereU is the internal strain energy, whileW is the work of the exter-
nal forces.

This methodology is rather simple and it can be easily applied
also to 3-D geometries, but is rather sensitive to the estimation of
dA. In particular, if the crack growth between two subsequent
increments is not constant, oscillations in the value of G become
sensible. Both methods were initially considered, and, for high mesh
refinements, they give very similar results. In order to keep the
time of the analysis as low as possible, the J-integral methodology
was chosen in this phase because it yields stable results also, with
a less refined mesh.

4. RESULTS

4.1. Strain Energy Release Rate Calculation

The strain energy release rate calculation procedure has been vali-
dated by comparing the results with respect to the analytical sol-
ution of G as a function of the crack length for Mode I double
cantilever beam (DCB, Fig. 5), Mode II end notched flexure (ENF,
Fig. 6), and end loaded split (ELS, Fig. 7) geometries. For all speci-
mens, the adherends were supposed to be of aluminium alloy with
an elastic modulus and Poisson’s ratio, respectively, equal to
E¼ 70000MPa, n¼ 0.35. The results refer to a mesh dimension of
1mm for the adherends and 0.2mm for the cohesive elements.
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The adherends were modeled as four-noded plane stress isopara-
metric, fully integrated elements.

Considering the DCB geometry (Fig. 5), the analytical solution for G
taken as reference is

G ¼ Pað Þ2

bEI
1þ 1

akr

� �2

; ð22Þ

where I is the second moment of area of the beam section ( I ¼ bh3

12 , b is
the width, and h is the thickness of each beam) and kr is a constant
parameter depending on the geometry and material properties [32].

FIGURE 5 DCB geometry.

FIGURE 6 ENF geometry.
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In the case of the ENF geometry (Fig. 6), the reference is Eq. (23)
derived from Wang and Williams [33]:

G ¼ 9 aþ 0:42DIð Þ2P2

16b2Eh3
ð23Þ

where DI is a crack length correction to account for the shear
deformation, and is equal to

DI ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ nð Þ

11
3� 2

C
Cþ 1

� �2
" #vuut ð24Þ

with

C ¼ 1:18 � 2 1þ nð Þ: ð25Þ
This formulation [Eq. (23)] is valid only for a crack length lower

than L=2. Finally, the strain energy release rate for the ELS geometry
(Fig. 7), derived from Wang and Williams [33], is equal to:

G ¼ 9 aþ DIIð Þ2P2

4b2Eh3
: ð26Þ

where DII¼ 2DI. Figures 8–10 show the comparison between the
analytical solution and the strain energy release rate computed using
the FCG subroutine developed in this work. In all the three cases, a
very good agreement is obtained. For the ENF and ELS joints, some
oscillation can be noticed at the beginning of the propagation phase.
These are linked to the mesh dimension: the smaller the mesh
dimension of adherend and adhesive, the smaller are the oscillations.

FIGURE 7 ELS geometry.
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FIGURE 9 Comparison between the normalized strain energy release rate
automatically computed by the FCG subroutine and the analytical equation
for the ENF joint.

FIGURE 8 Comparison between the normalized strain energy release rate
automatically computed by the FCG subroutine and the analytical equation
for the DCB joint.
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It is also interesting to compare the results obtained using Eqs. (20)
and (21). For the same mesh size (DCB joint with a mesh size of
0.2mm for the cohesive elements, and 1mm for the adherends),
Eq. (21) yields the same trend as Eq. (20) but with evident oscillations,
as shown in Fig. 11. A little qualitative improvement can be obtained
refining the mesh of adherends and cohesive zone, but in this case a
greater computational effort is necessary. Fig. 12 shows, for example,
the same analysis carried out for Fig. 11, but with a mesh size of
0.1mm for the cohesive zone.

4.2. FCG Rate Simulation

The Mode I and Mode II parameters of the cohesive zone and FCG rate
were taken from the work of [28], Table 1. The result is the simulated
FCG rate, compared with the one calculated analytically with the
parameters in Table 2.

The comparison is shown in Figures 13–15 for the three joint geo-
metries (0.2mm mesh dimension was used for the cohesive zone,
1mm for the substrates, and a value of DDmax equal to 0.2). Concern-
ing the Mode I propagation (DCB joint), there is a good prediction of
the crack growth rate, but small differences can be noticed regarding
the slope of the curve: the FCG rate model gives a curve with a slope

FIGURE 10 Comparison between the normalized strain energy release rate
automatically computed by the FCG subroutine and the analytical equation
for the ELS joint.
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FIGURE 11 Comparison between the normalized strain energy release rate
computed by using the J-integral [Eq. (20)] and the EDT [Eq. (21)], for a
DCB joint having a mesh size of 0.2mm for the cohesive zone and 1mm for
the adherends.

FIGURE 12 Comparison between the normalized strain energy release rate
computed by using the J-integral, [Eq. (20)] and the EDT [Eq. (21)], for a
DCB joint having a mesh size of 0.1mm for the cohesive zone and 1mm for
the adherends.
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slightly lower than that obtained with the reference parameters. A
qualitatively similar, even more pronounced behavior has been evi-
denced also in [28]. The difference with respect to that work is related
to the different definition of damage [Eq. (6)] used here, where D
affects K0 instead of C0 as in [28].

Concerning Mode II, both ENF and ELS geometries seem to give a
very good prediction of the crack growth rate, even though a small

TABLE 1 Cohesive Zone Parameters, Similar to [28]

Parameters Mode I Mode II

Fracture energy C [N=mm] 0.260 1.00
Maximum stress r [MPa] 30 30
Critical opening dc [mm] 0.0173 0.666
Onset damage opening d0 [mm] 0.003 0.003

TABLE 2 FCG Rate Parameters, Similar to [28]

Mode I Mode II

C 0.0616 4.23
M 5.4 4.5
Gth [N=mm] 0.06 0.100

FIGURE 13 Comparison between the crack growth rate trend computed by
the FCG subroutine and the reference trend for the DCB joint.
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FIGURE 14 Comparison between the crack growth rate trend computed by
the FCG subroutine and the reference trend for the ENF joint.

FIGURE 15 Comparison between the crack growth rate trend computed by
the FCG subroutine and the reference trend for the ELS joint.
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reduction of the slope with respect to the reference curve can also be
found in this case. Moreover, in the initial phase, the development of
the cohesive zone at the crack tip yields small perturbancies in the
crack length calculation that result in some oscillation of the crack
growth rate.

Finally, an insight into the influence of two fundamental para-
meters of the analysis, i.e., cohesive element size and damage
increment DDmax, has been provided.

Concerning the cohesive mesh size, as it slightly affects the
J-integral computation, in the same manner the dA=dN vs. DG plot
is slightly affected by the mesh size as shown in Fig. 16. The cohesive
zone, in all the cases examined, encompassed at least four to five
elements. Therefore, a ‘‘rule-of-thumb’’ of a minimum number of cohes-
ive elements within the process zone ACZ, which is well established in
the monotonic loading case, seems to hold also for the fatigue crack
growth case.

Figure 17 shows the influence of DDmax on the crack growth rate.
While the slope is preserved, the fatigue crack growth rate decreases
for an increase of DDmax, and this is more evident at low values of
DG. Moreover, it can be observed that the extension of the cohesive
zone decreases when DDmax increases, yielding a poor representation

FIGURE 16 Predicted crack growth rate for different cohesive element sizes
(DCB joint).
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of the cohesive zone stresses at the crack tip that, in turn, may affect
the fatigue crack growth prediction. Anyway, it is worth remarking
that, in the present case, going from DDmax¼ 0.5 to DDmax¼ 0.1 means
to increase the analysis time by a factor of five. The best performance
in terms of approximation of the experiments is obtained in this case
using DDmax¼ 0.2.

5. CONCLUSIONS

In this work, a routine interacting with a finite element software is
defined in order to represent the fatigue crack growth in a bonded
joint using cohesive elements. The traditional cohesive zone model
has been modified in order to model both the monotonic loading
damage and the fatigue crack growth rate. An additional feature
is the automated evaluation of the strain energy release rate using
the contour integral method. The J-integral computation is
validated by comparison with analytical solutions for simple joint
geometries representing pure Mode I and pure Mode II and, for
the same geometries, the fatigue crack growth predictions are
compared with literature data. In both cases, good agreement was
found, leaving room for the extension to mixed-mode and 3-D
loading conditions.

FIGURE 17 Predicted crack growth rate for different values of DDmax

(DCB joint).
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